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1. INTRODUCTION
Structures frequently contain members capable of transmitting only certain types of stress, e.g.
only tension. In other structures the boundary tractions or geometrical constraints are imposed
in the form of inequalities, e.g. a tensionless support. Finally, the yield criteria in the theory of
plasticity introduce inequalities in the formulation of the problem.

Such so-called unilateral problems are inherently nonlinear, even in cases of linear elasticity
and small deformations. In general, the unilateral problems are characterized by the fact that
changes of the external loadings are not accompanied by proportional changes in other
variables. Consequently, superposition is not, generally, applicable.

Existing analytical solutions are limited to idealized models and simple inequality con-
ditions. In the case of contact problems the finite element method has been used for the
numerical treatment of some practical problems. Many papers dealing with the static analysis of
contact problems assume a contact zone or treat the problem by using iterative methods, the so
called “trial and error” methods (see, €.g.[1-7]). The assumption of bilateral conditions on the
contact zone restrict the applicability of the methods, because the contact area is not known a
priori. Convergence to the correct solution by iterative procedures is not always guaranteed. In
general, “solutions” which satisfy the constraints of a unilateral problem do not need be the
desired (correct) solutions. This is demonstrated by examples in the present paper. Finally, the
incremental approach to the unilateral problems is accompanied by superfluous computational
effort and may lead to wrong solutions if the increments do not follow the structural changes.
Therefore, a systematic method is needed, for complex structures with arbitrary conditions.
The application of the finite element method to unilateral problems leads to a mathematical
programing problem and requires the use of optimization techniques[8-15]. However the
existing numerous optimization algorithms are subjected to a variety of limitations; most of
them are restricted to relatively small problems. Moreover, the existing general purpose
programs cannot be used without modifications. In this context it is mentioned that the penalty
method, as an existing general purpose optimization method, can be applied to a series of
unilateral problems. But, due to its generality, the required effort could be more than the effort
required by special quadratic optimization algorithms suitable for problems arising in structural
analysis. Many versions of the penalty method transform the nonlinear programing problem
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into a sequence of unconstrained problems by adding one or more functions of the constraints
to the objective function and deleting the constraints as such. However, convergence of the
penalty method (see, e.g.[23]) depends strongly on the choice of the coefficient of the penalty term
(Lagrange multipliers).

In this paper a mefhod is presented which provides a reliable tool for the solution of
unilateral problems without using optimization algorithms. The method is based on some
theorems proved for quadratic optimization problems by Theil and van de Panne[16]). By the
interpretation and the application of these theorems the unilateral problem is “replaced™
equivalently by a number of classical or bilateral problems. The theorems of Theil and van de
Panne permit the control of the iterations in such a manner, that convergence to the solution of
the unilateral problem is assured. The criteria developed by interpreting the aforementioned
theorems are extended to cover also problems described by positive-semidefinite matrices.
Moreover the resulting bilateral problems can be handled numerically by means of mixed finite
element models, as well. The mixed element method offers promising alternatives in the
treatment of plates and shells. Accordingly the present method could be seen as an attempt
towards the use of mixed finite elements for the numerical solution of unilateral problems
arising in structural mechanics.

The method can be used for the solution of all quadratic optimization problems arising in
structural mechanics and in some sense combines the advantages of the optimization
algorithms with the advantages of the linear analysis computer programs, i.c. effective treat-
ment of large problems.

Test cases of frames, plates and shells demonstrate the applicability and the convergence of
the method. Also, the results are compared with available analytical and numerical solutions.
The mathematica! derivations and proofs have been given previously [16, 17} and will not be
repeated here. Only the essential features, physical interpretations and methods of im-
plementation are presented.

2. METHOD OF SOLUTION

2.1 Introductory remarks

The local formuiation of the problems mentioned in the previous chapter requires, in
addition to the field equations of three-dimensional elasticity (equilibrium and kinematic
equations, elasticity law, boundary conditions), also constraints in the form of inequalities
describing the unilateral phenomenon. In the transformation of this formulation to a global
form, i.e. a variational principle, unilateral variations of the field variables arise. The conditions
expressing from the physical point of view the principal of virtual work hold now in an
inequality form (variational inequality) and, for these new type of boundary-value probiems,
special considerations concerning the extremum properties of the potential and complementary
energy are necessary[13]. The numerical treatment of these variational inequalities leads to the
solution of the following minimization problem:

. 1 .
min [ Q@) =34"Fa+q"pla7as b3 ] € So={L,2..., m}}, M

where F denotes, for the present, a positive-definite matrix, e.g. a stiffness matrix, and the
vectors q and p represent the unknown variables and the applied loads, respectively. Relations
(1) describe a quadratic programing problem which can be solved by appropriate algorithms.

The following method is based on optimization theorems but also incorporates some
features of “trial and error” methods. However, it clearly differs from usual “trial and error”
procedures, because it provides for the choice of the iteration steps and contains a criterion to
test the optimality.

2.2 Definitions
The following definitions and notations are introduced:
U.C.,B.C. Each inequality of problem (1) is termed a Unilateral Constraint written U.C. This
constraint is called Equality Constraint, if only the corresponding equality is
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satisfied. If a U.C. is removed, i.c. it holds in the form a,7q Zb;, then we say that

the U.C. is replaced by a Bilateral Constraint (B.C.).

Solution of problem (1).

The set of inllices of those restrictions, which § satisfies in equality form, i.c.
8 d=bforeveryje S$C S

Unrestricted minimum of problem (1), i.e. all U.C.’s are replaced by B.C.’s.

A subset of S (S C Sy).

Solution of

B e o

min [Q(@)la q=b;;j € S C ). @

Problem (2) is governed by the system resulting after S of the U.C.’s are satisfied
in equality form and So— S of the U.C.’s are replaced by B.C.'s.
{R} A set of one index A.
)

The empty set.
V(qg) Set of indices i for which a,7q> b, i.c. V(q) is the set of the restrictions which are
_ violated by a solution q.
V(g) Set of indices identifying those restrictions which a vector q cither violates in the
inequality form or satisfies in the corresponding equality form.

2.3 Theorems and rules
The following theorems are used as basis of the method. The proofs are given in [16, 17].

Theorem 1: Let $ denoting the set of indices indicating those restrictions, which the solution §
of problem (1) satisfies in equality form, i.e.

l]rﬁ=bi for j€ S
and

a74<b, for j& S
Then it holds

i=q°
Theorem 2: If §=q° and $# #, then it holds for all subsets S C S, including S = #, that
h € V(q°)

for at least one h € ($-S).

Theorem 3: If V(g®)=0#and h € V(qg*) for all h € S, then ¢° = §.
In the above theorem g%~ denotes the solution of the problem

min [Q(@)faq=b;; j € S-{h} C ). ?)

lfmompwgomdnseﬂmnmsminwpmtedandincmpmatedinthmmks,whichm
applied to obtsin successive solutions to conventional (bilateral) problems and, finally, the
solution of the original (unilateral) problem:

Rule 1: If the solution of the unrestricted probiem § violates some of the restrictions, the §, i.c.
the correct solution, must satisfy at least one of these restrictions in equality form.

Rale 2: I a solution q* of a subsequent system (problem 2), violates some restrictions then, at
least one of those restrictions, must also be enforced in equality form to obtain the optimum of
the initial problem, i.e. the solution §.
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Rule 3: A solution g° which satisfies all restrictions of the original problem, coincides with the
correct solution §, if, and only if, for every & € S the subsequent solutions q*~*! violate the
restriction h omitted in the solution q5.

Rule 1 indicates the first step needed to modify the initial trial, the solution of the
unrestricted problem. Rule 2 describes the way to proceed through successive steps. Rule 3
provides the test for the optimality of solutions q°.

2.4 Solution procedure

The method proposed here consists in the transformation of the problem constrained by
inequalities into a number of problems governed by equalities. As a starting point, the solution
§ of the system resulting from the replacement of all U.C.’s by B.C.’s is obtained and
subsequently the set V(§). If V(§) =#, the § represents the correct solution; but usually some
of the constraints are violated. If V(§)# @, then, by the stated Rule 1, the correct solution §
satisfies, in equality form, at least one of the restrictions violated. Taking the system used in the
previous step, as a basis, we fulfill the restriction in equality form and again solve the modified
system. If the solution q° does not satisfy all restrictions, i.e. if V(q®)##, then according to
Rule 2. at least one restriction, in equality form, is added in order to approach the correct
number of equalities (S). The procedure is continued until a g° is obtained with V(q®) = ¢. This
solution is not necessarily the optimal one. The optimality can be tested by means of Rule 3. To
this end, the equality constraints ({h}) are successively replaced by B.C.’s and solutions g5~}
are examined for violation of the restriction k. If, and only if, each restriction is violated for all
h € S, then the optimal solution is found. In cases of numerous constraints which occur in
practice, i.e. in problems of an extended contact zone, several U.C.’s may be replaced by
equality constraints simultaneously. This leads to a considerable reduction in computational
effort. Also, the execution of the control according to Rule 3 is not necessarily accompanied by
additional computational effort since the solutions g5~ are usually known from previous
steps. Applications of this method are illustrated in the subsequent examples.

The steps described above in connection with Rules 1-3 reveal the advantages of the
method:

1. The iterations are not arbitrary but are indicated by the prescribed criteria.

2. There exists a criterion, which indicates whether a particular solution is the optimal one.
It should be pointed out that a vector ¢° which does not violate some restrictions, i.e.
V(q®) =8, need not be the correct solution. The importance of this is shown in the numerical
examples presented here. This criterion distinguishes the proposed method from the usual “trial
and error” methods and proves especially useful for problems with complicated contact zones.

3. The transformation of the general quadratic optimization problem to a succession of
unconstrained, or equality constrained, minimization problems (which can be solved by the
classical methods of linear analysis) allows the use of general purpose computer programs.
They can be slightly modified in order to avoid superfluous effort during the iteration. Thus the
solution of problems involving many unknowns and constraints is possible, whereas the efficient
application of optimization algorithms is limited by the large number of unknowns. Moreover,
the optimization techniques require usually modifications in existing programs and may be
affected by inaccuracies.

4. The method can also be applied to the solution of problems expressed in terms of
positive-semidefinite matrices.

5. No assumptions concerning the active inequalities (e.g. the contact zone) need be made.

6. Convergence is guaranteed since the method is based on theorems already proved for the
quadratic optimization problem by Theil and van de Panne[17]}.

2.5 Extension to positive-semidefinite matrices

In case, that the minimization problem (1) contains a positive-semidefinite matrix F, the
foregoing method applies with the following modification of Theorem 3 and the corresponding
test of optimality.
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Theorem 3a: Let the matrix F of problem (1) be positive~semidefinite. For a ¢° with V(qg®) =4,

T =§
if, and only if, k € V(¢* ™) forevery h € S.

The theorem states, that the B.C.’s, signified by dndex A, either must not belong to the
admissible domain of problem (1) or must lic on the boundary of the admissible domain, i.c.
2,7q 2 b,. This must be true for every equality constraint of the “S™ structure.

Proof: Let V(g®) =8, i.c.

{87q=b,j € S:a7qs b,j € S~ S}. @

Since q° is the solution of problem (2), it satisfies the stationarity conditions:
{- (p+Fg)= ;gs Aaafg*=b,j € S}, )
where A denote the Lagrangean multipliers. Further ¢°-* satisfies the conditions:
{-@+raoh= 3 afWaiaTeW=b;ie S-h) ©
and the critical inequality:

a,Tqg>™Mz=b, foreveryh € S. W)
From egns (5)-(7) we conclude by subtracting and premultiplying by (q° — ¢ )7, that
(qs - qs—(h))rp(qs - qS-lh)) = A‘s(‘.rqs-{h) - b). 8)
From inequality (7) and the positive-semidefiniteness of matrix F it follows that
ASz0 foreveryh € S. )

Thus for g =q° the negative gradient of the function to be minimized can be expressed as a
non-negative linear combmahon of the outer normals to the boundary of the adnussible domain.
Then (see, eg.[17D) q° represents the solution of problem (l) Conversely, if q°=§, then

= A 20, for every j € S and thus from (5), (6) and (9), using (8), we conclude, that (7) is
vahd This necessary and sufficient condition for optimality is to be imposed on every q° with
V(q®) =8, when F is positive-semidefinite.

Finally, some additional comments are offered on the existence of the solution in the case of
a positive-semidefinite matrix F. These are special cases of more general considerations which
have been proved by Fremond ({8}, pp. 123-128) for the continuous minimization problem.

Suppose, for instance, that:

) h=z0V, €S8,

(b) either the set A ={gla” qu,.V) € S, Fq=0} is bounded, or Vq € A, such that for
q#0 and 0su < uq € A, pTq<0. Then problem (1) allows for at least one solution §.
Mmovu.thenetSofthecmmu,whlchmamﬁedmemnlnyform.uwn-empty if
there exists a vector q € Aforwhichp q#0. Iftheleemtavectorq € A, q#0, such that for
Osp.sw 1q € A (equivalently 5,7q <0V, € S,) and p"q> 0, then problem (1) does not have a

Theeondhonp q <0 is called strong Signorini condition. It should be pointed out that if
the weak Signorini condition p”q =<0 instead of the strong one is valid the existence of the
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solution is not guaranteed by the previous assumptions. Denoting

K={qla"q=b;Vj € S}, P={qlq"p=0,Fqx0}
and
A'=(K+P) N {qFq=0}

and assuming

(@) b;=0Vj € Sy (k+P is a closed set)

(b) Vq € A’,suchthatforq#0and0<pu sopg € A, p” q=0onefinds problem (1) to have
a solution.

3. RANGE OF APPLICABILITY

The method proposed in the present paper can be applied to solve a variety of unilateral
problems which otherwise require quadratic optimization. The problems involve the unilateral
stresses in cable structures, the unilateral contact of elastic bodies with or without friction, the
holonomic and the incremental elastoplastic behavior of structures{15], etc. To apply the
method developed here it is necessary to identify the U.C.’s, B.C.’s and the equality constraints
imposed by the physical circumstances. Some specific problems serve here to illustrate the
method.

3.1 Stress-unilateral analysis of cable structures

We consider structures containing some members which are capable of transmitting only
tension (like cable-elements for example). The vector of stress s can be decomposed into the
vector §, which involves the stresses of the elements with unilateral behavior and also the
vector §, the stress vector of the remaining elements with bilateral behavior. The vector §
satisfied then the unilateral constraint

§=0. (10

For the sake of brevity, physical and geometrical linearity is assumed. The generalization for
cases of physical and geometrical nonlinearity is straightforward, when the updated Lagrangean
formulation is used. It is shown in[18] that the problem can be formulated in terms of stresses
as the following minimization problem:

min[ﬂ(s)=%eros+sTeo Gs=p,§§0]. (1)

Let s, denote a particular solution of the equilibrium equations:

Gso=p (p: load vector). (12)
The vector s can be written in the form

s = s+ Bx, with GB=0.

The vector s can also be split into § and § and also the matrix B into B and B. Thus the
formulation of the problem in terms of forces can be stated in the following form:

min [Q(x) =%xfnx+xf(d.,+n’e,)|§x+a,go], 13)

where
D=B'FB and do=BTFs,.

The quadratic optimization problem (13) can be solved as follows: The transformation of all of
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the U.C.'s Bx +5 20 to B.C.'s consists of replacing the cabies by pin-ended bars with the same
fiexibility. The resulting structure is called “respective bilabwrsl imstere”. A constraint
satisfled in equality form, ie. 5, =0 is realized by emiiting the correaponding member. By
means of the physical interpretation, the throe rults give all the modilications (cutting of
clements), which are successively performed on the “reupective bilateral structure” and lead to
the solution of the initial unilateral structure.

3.2 Unilateral contact problems

According to the type of contact and the material properties of the contiguous bodies, a
variety of unilateral problems can be formulated. We restrict ourselves to “dry conmtact”
problems, exclude lubricated surfaces and physical nonlinearities. The various kinds can be
arranged in the following groups.

(a) Boundary conditions of Signorini-Fichera type. If a part of the body I rests on a rigid
foundation, then the following unilateral condition holds (see Figs. 1a, c):

if uy<0 then Sy=0 (14a)
if uy=0 then Sy=0. (14b)

The terms T, T,, I, of Fig. 1(a) denote nonoverlapping parts of the boundary, where
displacements, forces and unilateral conditions are prescribed respectively. Moreover we assume
that on I, the vector Sy, or uy, are prescribed. On the constraints (14a) and (14b) a B.C. implies the
removal of the supporting surface and an equality constraint implies contact. When a foundation
lies at a variable distance d(s) from the body, i.e. uy = d(s), an equality constraint is equivalent to
the coadition uy = d(s).

(b) Unilateral constraints by elastic supports. The following conditions describe the problem:

if uy<0 then Sy=0 (15a)
if Un 20 then S~=-ku~, (15b)
where k denotes the Winkler’s constant of the tensionless foundation. These conditions are

completed by the condition Sy, = Cr; onI's. The first condition (15a) holds at the regions, where the
support is not attached, and hence it cannot exert tension, and the second condition holds at the

(e) N (d)
Fig. 1. Problems with unilatersl constraiats.



998 P. D. PanaciotorouLos and D. TaLAsLIDIS

contact regions (see Figs. 1a and 1d). A B.C. is realized by attaching the spring to the body and an
equality constraint by omitting the spring.

(c) Friction boundary conditions. Contact between dry surfaces may be described by the
Coulomb’s law: If f-denetes the Coulomb’s coefficient of friction and A a positive unspecified
coefficient of proportionality, then the friction boundary conditions take the form:

if |Sr|<fISyl, then up=0 (16a)
it |Sr|=fISy], then up=-—ASpAZ0. (16b)

The conditions (16) introduce nondifferentiable terms in the functional of the potential energy
to be minimized. The solution requires the use of special optimization algorithms, which avoid
the caiculation of derivatives[13]. However, the present method can be applied as well to the
solution of the friction problems, if one considers the complementary energy functional. In this
case a quadratic optimization problem of the form (1) arises[13]. If the constraints (16) occur
together with the constraints (14), the following method of approximation can be applied: As a
starting point, the problem without friction is solved and the forces Sy, are estimated. For
Sn = Sy the friction problem is solved and the value of Sy, say Sy, is calculated. Solving the
unilateral problem for Cr = Sr; a new set of forces Sy, is obtained. The procedure is repeated
until the differences Sy, ~ Sr, and Sy, — Sy, respectively, fall within prescribed limits. By
means of this procedure the sliding and adhesive friction regions are determined together with
the contact and non-contact regions.

3.3 Two elastic bodies in contact

At any point i (Fig. 1b) in the zone of contact, the difference between the displacements of
the adjacent bodies must be less than the initial separation d(s). This condition is stated as
follows:

uy' — ul = d(s). amn
Such conditions of compatibility are included in the general form:

G = Arq; + &, (18)

where & is a given value and A is a prescribed matrix relating the variables g, and q;.

4. SPECIAL CONSIDERATIONS

To perform an iteration step, any finite element program may be utilized. Superfluous
computational effort can be avoided if the existing programs are slightly modified in order to
treat the constraints satisfied in equality form in an effective manner. The equality constraints
lead to relations of the following general form:

g =4+ 2‘ Codps (19)
p.

per

where g, denotes the rth degree of freedom which is coupled with m variables g, and the
coefficients C, are elements of an 1 X (n — 1) vector containing m nonzero elements. In the case
of the Signorini~Fichera conditions eqn (19) takes the simpler form g, = §. The introduction of
the equality constraints into the unconstrained problem leads to a nonsymmetrical matrix. This
can be avoided by performing some matrix operations proposed in[19]. In other respect the
present procedure differs: The dependent variables are not condensed out but retained, the
original matrix is stored and each equality constraint is introduced successively. This avoids a
reordering of the unknowns and is suitable when using equation solvers taking into account the
blockstructure of the system matrix.
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Fig. 2. Frame with unilateral supports.

5. EXAMPLE PROBLEMS

The following examples provide insight into the proposed method and also demonstrate its
applicability and convergence.

(a) First example

The frame shown in Fig. 2 involves three unilateral supports with the constraints &, =0,
i=A,B and 4, 0. The problem is solved in[10] with the aid of an optimization algorithm.
Here details of the present procedure are described for the load case IIL

As 1 first step, the U.C.'s A, B, C are replaced by B.C.’s, i.c. the problem is solved without
the above mentioned supports. The solution § violates all restrictions, i.c. V(§)# 8. According
to Rule 1, the correct solution § must satisfy, in equality form, at least one of the violated
restrictions. Therefore, the restriction imposed by support A is replaced by an equality
constraint, i.c. at A the constraint «,, = 0 is introduced. The solution q* of this system yields a
set of violations: V(q*) = {B, C}. Following Rule 2, a constraint is introduced at C. This leads to
V(qg®) =8, where S ={A, C}. The next step is the test for optimality of solution q°: Each of the
equality constraints introduced previously must now be successively removed and each
corresponding solution must violate that constraint (k € V(g*™) for every h € S). The
solution ¢*~* ! was obtained by satisfying the restrictions at A, C in equality form. Therefore,
the equality constraint in A is first removed to obfain a solution q>~1* = gl4- €4 = q€ which
violates the condition at A. Finally, the equality constraint in C is removed to obtain the
solution g = ¢f4- € = q* with a set V(g*) containing C. According to Rule 3, the optimal
solution for load case III is q* € and thus the structure has contact at A, C. Table 1 shows the
resuits obtained for the three load cases which agree with those given in[10]. It is apparently
difficult to guess the role of the unilateral support under different load conditions: ¢.g. under the

forces P acting on the frame, it is not obvious that support A maintains contact and not support
B.

(b) Second example

The next example (Fig. 3) demonstrates the applicability of the method to problems with
finite areas of contact and also the importance of the test given in Rule 3. Two conditions of

Table 1. Frame with unilateral supports—results for load cases J-IT1

Losd c‘:“':“ ot o o Reaction [Kips] at
€8¢ | support A ] c
1 LA,B‘ C| 00 0.0 00 365720 | 0885 | 0892

| —_
AC 0.0 |-113719 0.0 45485 00 [379.058

I
mij AC | 00 [-111586 | 0.0 |411.168 0.0 (380158
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Fig. 3. Circular plate—analytical and numerical solutions.

support are treated: Firstly, the plate rests upon a rigid plane and secondly, upon a tensionless
foundation. The conditions are comparable to the actual conditions at the ends of cylindrical
tanks. Analytical solutions for the plate on the rigid foundation are given in [20]. Here the case
of tensionless foundation is also investigated.

The essential steps of the method are described for the case a = 1. The first step-solution of
a simply supported circular plate—violates all restrictions. In the next iteration equality
constraints are simultaneously introduced at a number of points within a preselected region, i.c.
points lying between x=0.0m and x =3.3m. Since, the solution gives a nonempty set of
violated restrictions, the equality constraint are extended in the third step to x =3.62m and

Table 2. Circular plate resting on a rigid foundation

1T

-5" -5’ contact conmctd
a | Mg |10 %10 a8 area Im! | between

1 10675 [ 729036 | -75 [006804336| 370 |370/3718

2 {135 J222363 | ~230 02075391 258 12587264

3 [2025 (438 ~439 {04088 156 | 156/162

4 {27 (7237966 | -5 | 067554 054 1054/0680

5 | 3375 {07176 ~10716 | 1.0003 00 00

§2 | 351 |128582 | -1290 | 1200192 no contact

+4gdiscrete solution o present paper

s continuous solution 4 taken from given
figure
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Table 3. Circular plate resting on an elaitic tentingléss foundition

nocon:g:t. no b.c‘m:act ..
a)l Mg &10'6 [ <) s ool x= |x= &.nx:

1 {0675 187.017667 10.08121649 ) 410 | 582 14.02/410582/588

- : —

2| 135 240328 0224306 |29¢ | 588 288/294'588/59
+ <+ +

3 20257458.22567’10.427673 | 1.92

-+

588 1.86/1.92 '5.88/5.94
1.

4| 2.7 1741.87667 ; 0.692418 | 0.96

b~ -

5.88 [090/096%5.88/5.94
i

513375 | 1084.59 1.012284 0.18 1 5.94 [015/018 :5.94/6,00
R .
km contact at x=0.0[m)

r
5.2|3.51 1285.92 1.20019

no contact

6.0{4.05 izm.to 2.000227

4d:screte sluton
4 continucus solustion

.again, for the same reason in the fourth step to x = 3.78 m. This system does not violate the
restrictions but its solution—after application of the test—is not the correct solution. Introduction
of equality constraints to x=3.7m leads to an empty set of violated restrictions. Rule 3
requires the application of the test for all equality constraints introduced previously. Here the
test need be applied only for the exterior point at x = 3.7 m, because it is apparent, that all
interior points will pass the test. Thus much computational effort can be avoided by the
simultaneous use of several equality constraints and by applying the test only as dictated by the
physical circumstances. Due to the continuous change of the contact area the Moment-Rotation
diagram of Fig. 3 is nonlinear to a = 5. The stiffness of the system decrease with decreasing contact
zone. At a =5 the plate lifts entirely from the support ant the relationship becomes linear. The
comparison of the results with the analytical solution (Table 2) show a good agreement.
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Fig. 4. Circular plate resting on a rigid foundation—deformed shapes.
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Fig. 7. Circular plate resting on an elastic tensionless foundation—contact forces.

Finally, the response of a plate on a unilateral elastic foundation is investigated. The
foundation is idealized by discrete springs corresponding to Winkler’s model. In contrast with
the rigid support, the contact zone consists of two parts: Contact in a central zone and an edge
zone. This leads to an increase in the required number of iterations and clearly shows the
importance of performing the test. Tables 2 and 3 show the results obtained for both cases and
Figs. 4-6 illustrate the deformation shapes of the plate. Finally, the distribution of the contact
forces for several values of the bending moment M, are illustrated in Fig. 7.

(c) Third example

_ The cylindrical tube of Fig. 8 is encased in concrete, assumed rigid and subjected to external
hydrostatic pressure. The cylinder is approximated in two ways: Flat elements are employed
with a displacement formulation and a curved shell element based on a mixed formulation[21]
in terms of stresses and displacements. The latter approach demonstrates the applicability of the
method in connection to mixed finite clement models, i.e. the present method could be seen as
an attempt towards the use of mixed finite elements for the numerical solution of unilateral
problems arising in structural mechanics. This example is investigated in[22] which also
considers geometrical nonlinearities and uses “trial and error” methods. Here geometrical
nonlinearities and friction are neglected. Also the cylinder is assumed long enough so that end
effects are not considered and the behavior is independent of the axial coordinate. The problem

Pay-h
elemen/ts 3
”u.b,,'%f unknowns | (212
constraints 75
constraint. 150
+ Ydisplacement model
4case! wjcase? »
Ecttrmsenl yee3 Lot N 14501 PrN 1o’

Fig. 8. Cylinder encased in concrete—geometry and loads.
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Fig. 9. Cylinder encased in concrete—second case.
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Fig. 10. Cylinder encased in concrete—first case.

is solved for two cases of constraints. In the first case only the radial displacements are
constraint against outward movement and the tangential displacements are unrestricted. In the
second case the tangential displacements are also prohibited when contact is maintained, i.e.
radial displacements vanish. In our first case upward radial displacements are inadmissible, but
the solution admits small tangential displacements. In our second case, tangential displacements
as well as radial displacements are prohibited on the contacting surfaces; the constraints lead to an
increase in the stiffness of the system. Figures 9 and 10 illustrate the deformed shape of the shell
and the contact area. Figure 10 also shows the distribution of bending moments.
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